The maltodextrin system of Escherichia coli: metabolism and transport.
نویسندگان
چکیده
The maltose/maltodextrin regulon of Escherichia coli consists of 10 genes which encode a binding protein-dependent ABC transporter and four enzymes acting on maltodextrins. All mal genes are controlled by MalT, a transcriptional activator that is exclusively activated by maltotriose. By the action of amylomaltase, we prepared uniformly labeled [(14)C]maltodextrins from maltose up to maltoheptaose with identical specific radioactivities with respect to their glucosyl residues, which made it possible to quantitatively follow the rate of transport for each maltodextrin. Isogenic malQ mutants lacking maltodextrin phosphorylase (MalP) or maltodextrin glucosidase (MalZ) or both were constructed. The resulting in vivo pattern of maltodextrin metabolism was determined by analyzing accumulated [(14)C]maltodextrins. MalP(-) MalZ(+) strains degraded all dextrins to maltose, whereas MalP(+) MalZ(-) strains degraded them to maltotriose. The labeled dextrins were used to measure the rate of transport in the absence of cytoplasmic metabolism. Irrespective of the length of the dextrin, the rates of transport at a submicromolar concentration were similar for the maltodextrins when the rate was calculated per glucosyl residue, suggesting a novel mode for substrate translocation. Strains lacking MalQ and maltose transacetylase were tested for their ability to accumulate maltose. At 1.8 nM external maltose, the ratio of internal to external maltose concentration under equilibrium conditions reached 10(6) to 1 but declined at higher external maltose concentrations. The maximal internal level of maltose at increasing external maltose concentrations was around 100 mM. A strain lacking malQ, malP, and malZ as well as glycogen synthesis and in which maltodextrins are not chemically altered could be induced by external maltose as well as by all other maltodextrins, demonstrating the role of transport per se for induction.
منابع مشابه
Maltoheptaose promotes nanoparticle internalization by Escherichia coli.
Nanoparticles conjugated with d-maltoheptaose (G7) showed a striking increase in the internalization by Escherichia coli. This applies to strains with and without the maltodextrin transport channel and particles ranging from a few to a hundred nanometers.
متن کاملNetwork regulation of the Escherichia coli maltose system.
The genes of the Escherichia coli maltose regulon are controlled by MalT, the specific transcriptional activator which, together with the inducer maltotriose and ATP, is essential for mal gene transcription. Network regulation in this system affects the function of MalT and occurs on two levels. The first concerns the expression of malT. It has long been known that malT is under catabolite repr...
متن کاملA cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system.
A new cost-effective metabolism providing an ATP-regeneration system for cell-free protein synthesis is presented. Hexametaphosphate, a polyphosphate molecule, is used as phosphate donor together with maltodextrin, a polysaccharide used as carbon source to stimulate glycolysis. Remarkably, addition of enzymes is not required for this metabolism, which is carried out by endogenous catalysts pres...
متن کاملMaltose chemoreceptor of Escherichia coli.
Strains carrying mutations in the maltose system of Escherichia coli were assayed for maltose taxis, maltose uptake at 1 and 10 muM maltose, and maltose-binding activity released by osmotic shock. An earlier conclusion that the metabolism of maltose is not necessary for chemoreception is extended to include the functioning of maltodextrin phosphorylase, the product of malP, and the genetic cont...
متن کاملThe periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport.
Klebsiella oxytoca M5a1 has the capacity to transport and to metabolize alpha-, beta- and gamma-cyclodextrins. Cyclodextrin transport is mediated by the products of the cymE, cymF, cymG, cymD, and cymA genes, which are functionally homologous to the malE, malF, malG, malK, and lamB gene products of Escherichia coli. CymE, which is the periplasmic binding protein, has been overproduced and purif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 187 24 شماره
صفحات -
تاریخ انتشار 2005